ํ์ด์ฌ ์ฝ๋ฉ ๊ณต๋ถ ํฌ๊ธฐํ์๋๋ฐ, chatGPT์ ํจ๊ป ํ๋ค๋ฉด, ๋ญ๊ฐ ํ ์ ์๊ฒ ๋ค๋ ํฌ๋ง์ด ๋ณด์ธ๋ค.
๊ฐ์๊ธฐ chatGPT๋ก ํ์ด์ฌ ์ฝ๋ฉ์ ์ด๋ป๊ฒ ํ์ฉํ ์ ์์ง ์์๊น ๊ถ๊ธํ์ฌ ์๋์ ๊ฐ์ด ์ง๋ฌธํด ๋ณด์๋ค.
*์ง๋ฌธ ์ ์ก: python coding for backtesting NDX and Cash from 2000 to today
*๊ทธ๋ฌ๋๋ ๋ค์๊ณผ ๊ฐ์ด ์ฝ๋ฉ ์์ ๋ฅผ ์ ์ํด ์ค๋ค.
To backtest the NDX and Cash from 2000 to today in Python, you can follow the steps below:
Import the necessary libraries:
python
Copy code
import pandas as pd
import yfinance as yf
Define the start and end dates for the backtest:
python
Copy code
start_date = '2000-01-01'
end_date = '2023-04-02'
Download the NDX and Cash data from Yahoo Finance using the yfinance library:
python
Copy code
ndx = yf.download('^NDX', start=start_date, end=end_date)
cash = yf.download('CASH', start=start_date, end=end_date)
Combine the NDX and Cash data into one DataFrame and calculate the daily returns:
python
Copy code
data = pd.concat([ndx['Adj Close'], cash['Adj Close']], axis=1)
data.columns = ['NDX', 'Cash']
returns = data.pct_change().dropna()
Define the backtesting strategy. For example, let's say we want to allocate 80% to the NDX and 20% to Cash and rebalance the portfolio every month:
python
Copy code
weights = [0.8, 0.2]
monthly_returns = returns.resample('M').apply(lambda x: (x * weights).sum())
Calculate the cumulative returns of the backtesting strategy:
python
Copy code
cumulative_returns = (1 + monthly_returns).cumprod() - 1
Plot the cumulative returns:
python
Copy code
cumulative_returns.plot(figsize=(10, 6))
The complete code would look like this:
python
Copy code
import pandas as pd
import yfinance as yf
start_date = '2000-01-01'
end_date = '2023-04-02'
ndx = yf.download('^NDX', start=start_date, end=end_date)
cash = yf.download('CASH', start=start_date, end=end_date)
data = pd.concat([ndx['Adj Close'], cash['Adj Close']], axis=1)
data.columns = ['NDX', 'Cash']
returns = data.pct_change().dropna()
weights = [0.8, 0.2]
monthly_returns = returns.resample('M').apply(lambda x: (x * weights).sum())
cumulative_returns = (1 + monthly_returns).cumprod() - 1
cumulative_returns.plot(figsize=(10, 6))
๋๋ฐ!
์ฝ๋ฉ ์์ฑ์ ๊ธฐ์ด๋ง ๋ค์ ๋ฐฐ์ด๋ค๋ฉด,
์์ ์ฝ๋ฉ ์์ ๋ฅผ ์ตํ๋ฉด์ ํ์ฅ ์์ฉํ ์ ์์ ๊ฒ์ด๋ค.
ํฌ๋ง์ด ์๊ธด๋ค!
๋ฃจ๋ ํํค์ฒ๋ผ ๊ท์ฌ์ด ๊ฐ์์ง์ ํจ๊ป ์ฝ๋ฉํ๊ณ ์ถ๋ค.
https://youtube.com/shorts/yoFryrQYR8c?feature=share
